LATEST UPDATES

Friday, 19 August 2016

Natural Frequency of Free Torsional Vibrations

          Consider a shaft of negligible mass whose upper end is fixed and the lower end carries a heavy disc. If the disc is given a twist about its vertical axis and then released, it will start oscillating about the axis, which are known as Torsional vibrations


Let   θ = Angular displacement of the shaft from mean position after time 't' in radians,
             m = Mass of disc in kg,
             I = Mass moment of inertia of disc in kg-m = m.k2,
             k = Radius of gyration in metres,
             q = Torsional stiffness of the shaft in N-m.

At any instant, the torque acting on the disc are:
(1) Inertia torque and 
(2) Restoring torque or restoring force (or spring torque)
The inertia torque is equal to accelerating torque but opposite in direction.

Equating equations (iand (ii), the equation of motion is 
The fundamental equation of the simple harmonic motion is
Comparing equations (iiiand (iv)

Note :







No comments:

Post a Comment

@2017 All Rights Reserved. Designed by WWW.SMARTWAY4STUDY.COM !!!! Sitemap !!!! Blogger Templates